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Abstract
Computer-based modelling in ellipsoidal geometry can be useful in electro-
encephalography and gastrography due to the resemblance of the human
brain and stomach to an ellipsoid. Both theoretically and computationally,
the bioelectric current dipole model is important for the study of electrical
activity in these two organs. Computing the electric potential φ and electric
field E due to a current dipole located in an ellipsoid requires truncated series
expansions involving ellipsoidal harmonics E

m
n , which are the products of

Lamé functions. A theoretical model for this has appeared in the literature
only for expansions of order 2 in E

m
n ; however, this may be insufficient

in forward electrogastrography, while an analogous situation is encountered
in some geodetic problems where similar expansions are required. In this
paper, we propose a generalized model for computing φ and E numerically
using harmonic expansions of arbitrary order and degree. The implementation
of such a procedure involves finding roots of Lamé polynomials of degree
5 or higher using an optimization technique for solving nonlinear systems
of equations. This process can allow one to make a knowledgeable
decision concerning the optimal expansion size required for the physical
problem under investigation without compromising the overall accuracy of the
computation.

PACS numbers: 87.19.Na, 87.17.Aa, 87.10.+e

1. Introduction and motivation

The forward problem of bioelectromagnetism plays an important role in the scientific area of
biophysical electrodynamics. In human brain studies [20], for example, where the forward
problem has been the focus of attention for a considerable period of time, noninvasive
recordings of magnetic fields generated in the head have allowed researchers to detect
and measure the brain electrical activity directly via electroencephalography (EEG) and
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magnetoencephalography (MEG) [1, 35]. In magnetogastrography (MGG), on the other
hand, the phenomenon under study is the gastric electrical activity (GEA), generated by the
periodic depolarization and repolarization of cells in the stomach [3, 7]. The GEA originates
in the corpus of this organ as a wave propagating aborally towards the pylorus through the
electric syncytium of the stomach [36]. In the quasistatic approximation, the phenomenon can
be modelled as one or several current dipoles. A current dipole Q is a good approximation
for a small source viewed from a distant field point; it is a concentration of some impressed
current density Ji to a single point r0. Anomalies in the characteristics of dipole propagation
have been studied [27] and their relevance to the field of medical diagnosis has been the focus
of active research [2, 15]. In particular, the use of superconducting quantum interference
device (SQUID) magnetometers, pioneered by Cohen et al in the 1970s [8–10], has proven
to be very suitable for detecting and studying the GEA both in healthy and diseased subjects
[2]. An important practical aspect in favour of using SQUIDs for experimental biological data
acquisition is the ability to study gastrointestinal electromagnetic phenomena noninvasively,
which greatly eases the task of conducting clinical studies. Moreover, the noninvasive GEA
studies are encouraging in the light of current efforts to identify effective ways of analysing
the phenomenon of abnormal current propagation, which is associated with pathological
conditions such as gastroparesis and ischemia [4].

The current dipole approximation has widely been used in the literature to model the
biological electrical activity [34]. To study this phenomenon, the body of the stomach has
been simulated using cylinders, cones, conoids, ellipsoids and, very recently, using a realistic
model of the human body via the finite element and boundary element methods [5]. In 1985
[29, 30], Mirizzi et al proposed a mathematical model to simulate the extracellular electrical
control activity where an annular band polarized by electric current dipoles moves distally from
the mid-corpus to the terminal antrum. In 1995, Mintchev and Bowes constructed a conoidal
dipole model of the electrical field produced by the human stomach, where spontaneous
depolarization and repolarization due to ionic exchange were simulated [26]. Later, Irimia
and Bradshaw constructed a model of the stomach in which an annular band of dipoles
advances along a truncated ellipsoid [22], thus simulating the electric potential and electric
field recorded by a nasogastric probe.

An important advantage of using the ellipsoidal model in both MGG and EGG is the fact
that the problem is approached more realistically than in the case of spherical and conoidal
models. Moreover, ellipsoidal geometry offers a suitable ground for the evaluation of inverse
problem algorithms in both MEG and MGG. Computing the electric potential φ and electric
field E due to an electric current dipole in an ellipsoid requires a truncated expansion of
normal ellipsoidal harmonic terms E

m
n . The general approach to this was first proposed by

Kariotou [24] and Dassios [14], who outlined the formalism for this problem but who derived
the formulae for φ only up to order 2 in E

m
n . Analogous formulae for the electric field E

have not yet been derived. In our most recent study [23], the electric potential of the stomach
was successfully simulated using the low-order ellipsoidal harmonic expansion of Dassios and
Kariotou. However, it was found that all ellipsoidal terms included in this expansion (order 1
and 2) contributed substantially to the computed electric potential. This raises the important
question as to whether the contributions of higher-order terms may also be significant in
electro- and magneto-gastrographic modelling. This issue is significant because the accuracy
of the calculation may seriously be affected if an insufficient number of ellipsoidal terms are
included in the expansion. The purpose of the present paper is to address this problem by
providing a generalized theoretical and computational approach to the calculation of φ and E
using an arbitrarily large expansion of ellipsoidal terms. The computer implementation of our
proposed formalism would then allow one to investigate the contributions of these terms and to
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identify suitable cutoffs to the associated harmonic expansions so that an accurate calculation
of the two physical quantities under consideration (φ and E) is made possible.

In the following section, we present the mathematical formalism behind our model. We
then continue by deriving formulae for two important quantities in our calculation, namely
the gradient ∇ of the normal harmonic functions E

m
n and the first derivative of the associated

Lamé functions Em
n . Thereafter, generalized expressions for φ and E are found using the

mathematical tools developed and computational considerations regarding the overall problem
are addressed in the following section. Thus, the material in section 2 is a review of previous
work while the remainder of the paper contains novel results. We conclude with a discussion
and summary of our model, which we intend to implement numerically with the purpose of
answering the important modelling issues raised above.

2. Mathematical formalism

Throughout our derivations, we make use of the standard equation of the ellipsoid

x2
1

α2
1

+
x2

2

α2
2

+
x2

3

α2
3

= 1 (1)

where (x1, x2, x3) are the usual Cartesian coordinates (x, y, z) and 0 < α3 < α2 < α1 < +∞
are the ellipsoidal semiaxes. As in [21, 24], we also employ the ellipsoidal system, with
coordinates ρ,µ and ν and semifocal distances h1, h2 and h3, defined by

h2
1 = α2

2 − α2
3 (2)

h2
2 = α2

1 − α2
3 (3)

h2
3 = α2

1 − α2
2 . (4)

Conversion from ellipsoidal to Cartesian coordinates can be made via the relationships

x1 = ρµν

h2h3
(5)

x2 =
√

ρ2 − h2
3

√
µ2 − h2

3

√
h2

3 − ν2

h1h3
(6)

x3 =
√

ρ2 − h2
2

√
h2

2 − µ2
√

h2
2 − ν2

h1h2
, (7)

where ρ ∈ [h2, +∞), µ ∈ [h3, h2] and ν ∈ [−h3, h3]. In ellipsoidal coordinates, the Laplace
equation has the form

(µ2 − ν2)
∂2φ

∂β2
+ (ρ2 − ν2)

∂2φ

∂ϕ2
+ (ρ2 − µ2)

∂2φ

∂χ2
= 0, (8)

where

β =
∫ χ

h2

dρ√
ρ2 − h2

3

√
ρ2 − h2

2

(9)

ϕ =
∫ µ

h3

dµ√
µ2 − h2

3

√
h2

2 − µ2
(10)
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χ =
∫ ν

0

dν√
h2

3 − ν2
√

h2
2 − ν2

(11)

and φ is the electric potential.
To calculate the electric potential φ for an ellipsoid, the separation of variables for the

Laplace equation in ellipsoidal coordinates leads to the Lamé equation, which assumes the
following form for each of the three spatial coordinates ηi = ρ,µ, ν:(
η2

i − h2
3

)(
η2

i − h2
2

)
E′′(ηi) + ηi

(
2η2

i − h2
3 − h2

2

)
E′(ηi)

+
[(

h2
2 + h2

3

)
P − n(n + 1)η2

i

]
E(ηi) = 0. (12)

Above, P, n are constants, the prime in E′, etc indicates differentiation with respect to the
independent variable ηi = ρ,µ, ν, and the quantities E are the so-called Lamé functions that
form the normal interior harmonic function

E
m
n (ρ, µ, ν) = Em

n (ρ)Em
n (µ)Em

n (ν). (13)

The corresponding exterior harmonic functions F
m
n are given by

F
m
n (ρ, µ, ν) = (2n + 1)Em

n (ρ, µ, ν)Im
n (ρ)

= (2n + 1)Im
n (ρ)Em

n (ρ)Em
n (µ)Em

n (ν), (14)

where Im
n are elliptic integrals of the form

Im
n (ρ) =

∫ ∞

ρ

dt[
Em

n (t)
]2

√
t2 − h2

2

√
t2 − h2

3

(15)

with n = 0, 1, 2, . . . , and m = 1, 2, . . . , 2n + 1. The interior harmonic functions enter
the expression for the electric potential only for the space enclosed by the ellipsoid, while
the exterior harmonic functions are used to define the potential outside this body. In
fact, the internal harmonic terms diverge as r → ∞, while external terms tend to 0 in the same
limit, as expected. Naturally, the surface potential can be computed using either internal or
external harmonics since the boundary conditions imposed upon solving the Laplace equation
guarantee the absence of any anomalous discontinuities in the potential across the two media.

It was first shown by Lamé that four classes (also called species) of Lamé functions
exist, typically denoted by K(ηi), L(ηi),M(ηi) and N(ηi), respectively, where ηi is any of
the coordinates ρ,µ or ν. These are referred to as Lamé functions of the first (as opposed to
second) kind, a label that we omit from this point forward because our theory does not involve
Lamé functions of the second kind.

The Lamé functions of the first kind involve polynomials and can be written as

K(ηi) =
r+1∑
k=0

akη
n−2k
i (16)

L(ηi) =
√

η2
i − h2

3

n−r∑
k=0

akη
n−(k+1)
i (17)

M(ηi) =
√

h2
2 − η2

i

n−r∑
k=0

akη
n−(k+1)
i (18)

N(ηi) =
√(

η2
i − h2

3

) (
η2

i − h2
2

) r∑
k=0

akη
n−2(k+1)
i , (19)
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where the coefficients ak can be obtained by inserting the appropriate Lamé functions into
the Laplace equation, acoording to the approach described by Hobson [21]. The additional
restriction must be so placed that the power of each ηi in the expressions for K,L,M and N
above must be greater than or equal to zero. The index r in the summations above is given by

r =




n

2
for n even

n − 1

2
for n odd,

(20)

where n is the degree of the ellipsoidal harmonic E
m
n . For a harmonic of degree n, there are

2n + 1 associated Lamé functions; it can be inferred from equation (19) that there are r + 1
functions of type K, n − r functions of type L, n − r functions of type M and r functions of
type N, for a total of 2n+1 Lamé functions. Although not required for our derivations, we give
the definition of the Lamé functions of the second kind Fn for completeness. These functions
were introduced independently by Liouville and Heine; they involve the Lamé functions of
the first kind as well as elliptic integrals. Their general definition is given by

Fn(η) = (2n + 1)En(η)

∫ ∞

η

dη√
η2 − h2

√
η2 − k2

, (21)

where h and k are constants determined by the geometry ([21] discusses this type of functions
in more detail).

In the ellipsoidal formalism, the Lamé functions are used to construct ellipsoidal harmonic
functions, which are eigenfunctions of the Laplacian operator in ellipsoidal coordinates.
Thus, the Lamé functions and the triplet

(
Em

n (ρ), Em
n (µ),Em

n (ν)
)

are analogous to the radial
function Rm

l (r) and spherical harmonics Ym
l (θ, φ)—i.e., to the doublet

(
Rm

l (r), Ym
l (θ, φ)

)
—in

spherical harmonic theory.
Products of the form Em

n (µ)Em
n (ν) are called surface ellipsoidal harmonics because they

refer to the ellipsoidal surface ρ = ρ0. We adopt the convention used by Kariotou [24] and
label the normalization functions associated with the ellipsoidal harmonics as γ m

n . These
quantities assume the form

γ m
n =

∮
ρ=ρ0

[
Em

n (µ)Em
n (ν)

]2√(
ρ2

0 − µ2
) (

ρ2
0 − ν2

) dS, (22)

where

dS = dµ dν(µ2 − ν2)

√
(ρ2 − µ2)(ρ2 − ν2)(

µ2 − h2
3

) (
h2

2 − µ2
) (

h2
3 − ν2

) (
h2

2 − ν2
) (23)

is the ellipsoidal surface element in the same coordinate system [6]. The formulation of
ellipsoidal harmonics in Cartesian coordinates is given by

E
m
n (r) = Cij

m∏
k=1

�k, (24)

where �k(x, y, z) is known as the Niven function [21, 33],

�k = x2

α2
1 + θk

+
y2

α2
2 + θk

+
z2

α2
3 + θk

− 1, (25)
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while θk is the kth root of the Lamé function Em
n . C denotes a matrix whose elements are given

in Cartesian coordinates and are labelled by subscripts i and j , indicating the corresponding
row and column, respectively, of the appropriate entry. C has the form

C =



x yz

1 y zx xyz

z xy


 . (26)

Columns in C correspond to each of the function types K,L,M and N, while rows refer to
the coordinates in the chosen system, i.e. x, y or z in the Cartesian system. To evaluate E

m
n

using equation (24), one must select appropriate entries in C for each coordinate and multiply
the resulting quantity by the product

∏m
k �k . Lamé showed that the roots of the functions

bearing his name must all be real, distinct and located in the interval
(−α2

1, α
2
3

)
. In ellipsoidal

coordinates, the harmonics can be written as

E
m
n (r) = Lij

m∏
k=1

k, (27)

where Lij denotes the appropriate entry in matrix L given in ellipsoidal coordinates, where

L =




ρ

√
ρ2 − h2

3

√
ρ2 − h2

2

√(
ρ2 − h2

3

)(
ρ2 − h2

2

)
1 µ

√
µ2 − h2

3

√
h2

2 − µ2
√(

µ2 − h2
3

)(
h2

2 − µ2
)

ν

√
h2

3 − ν2
√

h2
2 − ν2

√(
h2

3 − ν2
)(

h2
2 − ν2

)




(28)

and

k = (
ρ2 − ψ2

k

)(
µ2 − ψ2

k

)(
ν2 − ψ2

k

)
. (29)

In this case, ψk are the roots of the corresponding function k(ρ, µ, ν) expressed in ellipsoidal
coordinates.

3. Derivation of ∇E
m
n and dEm

n

/
dηi

The two coordinate systems used above (Cartesian and ellipsoidal) are both important
throughout our derivations; for this reason, formulae of interest will be given in a form
that is independent of the coordinate system chosen. In this section, we derive two particular
quantities that are of interest in each of them, namely the gradient of the normal ellipsoidal
harmonic function E

m
n and the derivative of the Lamé polynomial Em

n .
For any diagonal metric tensor gij = giiδij (where δij is the usual Kronecker delta

function), the scale factors si are defined in terms of the parametrizations xi = fi , where xi

are the Cartesian coordinates and fi are the functions xi in terms of some other coordinates
ηi . In our case, ηi are the ellipsoidal coordinates ρ,µ and ν and the parametrizations fi are
given in equations (5)–(7). For three-dimensional space, the scale factors si are defined as

si = (gii)
1/2 (30)

=
[

3∑
k=1

(
∂fk

∂ηi

)2
]1/2

. (31)

In this generalized formalism, the gradient ∇w(ηi) of any function w of three independent
variables ηi assumes the form

∇w =
3∑

i=1

1

si

∂w

∂ηi

âi , (32)
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where âi are the three unit vectors in the coordinate system ηi . For the Cartesian case, we
obtain the familiar expression

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (33)

Applying this formalism to the ellipsoidal coordinate case, we obtain

∇ = 1

sρ

ρ̂
∂

∂ρ
+

1

sµ

µ̂
∂

∂µ
+

1

sν

ν̂
∂

∂ν
, (34)

where inverses of the scale factors [31] are given by

1

sρ

=
√(

ρ2 − h2
2

)(
ρ2 − h2

3

)
(ρ2 − µ2)(ρ2 − ν2)

(35)

1

sµ

=
√(

µ2 − h2
2

)(
µ2 − h2

3

)
(µ2 − ρ2)(µ2 − ν2)

(36)

1

sν

=
√(

ν2 − h2
2

)(
ν2 − h2

3

)
(ν2 − ρ2)(ν2 − µ2)

. (37)

Another quantity that will be useful later is the outward unit vector n̂ with respect to the
surface of the ellipsoid. In Cartesian coordinates, the ellipsoid can be defined [22] by the
implicit equation F(x, y, z) = 0, where

F(x, y, z) = x2

α2
1

+
y2

α2
2

+
z2

α2
3

− 1. (38)

It follows by a theorem of vector calculus [17] that, in the Cartesian coordinate system, the
normal unit vector can be defined as

n̂ =
[(

∂F

∂x

)2

+

(
∂F

∂y

)2

+

(
∂F

∂z

)2
]−1/2

∇F (39)

=
(

x

α2
1

x̂ +
y

α2
2

ŷ +
z

α2
3

ẑ
)(

x2

α4
1

+
y2

α4
2

+
z2

α4
3

)−1/2

. (40)

For ellipsoidal coordinates, the expression for this function is quoted in [13] as being given by

n̂ = Dnρ̂, (41)

with

Dn = α2α3√(
α2

1 − µ2
)(

α2
1 − ν2

) . (42)

To compute the gradient of the Lamé function, the Cartesian coordinate system is
preferable because of the simple form assumed by this operator in terms of x, y and z.
Applying the gradient operator to the Cartesian coordinate expression in equation (24) and
keeping in mind the product rule of differentiation yields the result

∇E
m
n (r) =

[
Gij +

(
Cij

m∑
k=1

ξk

)
û

]
m∏

l=1

�l, (43)
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where G is a vector matrix with entries

G =



x̂ yẑ + zŷ
0 ŷ xẑ + zx̂ xyẑ + yzx̂ + xzŷ

ẑ xŷ + yx̂


 . (44)

The function ξk is defined as

ξk(r) = 1

�k

∇�k

= 2

�k

(
x

α2
1 + θk

+
y

α2
2 + θk

+
z

α2
3 + θk

)
(45)

and û = x̂ + ŷ + ẑ is composed of the three orthonormal vectors in each of the coordinate
directions.

Before we address the problem of computing ∇E
m
n in ellipsoidal coordinates, let us

compute the first derivative of the Lamé polynomial Em
n , which has the general form

d

dηi

Em
n (ηi) = Lij

d

dηi

Bm + L′
ijB

m, (46)

the prime in L′
ij denoting differentiation of the appropriate entry in matrix L with respect to

ηi . The function Bm is defined as

Bm =
m∏

k=1

(
η2

i − ψ2
k

)
(47)

=
m∏

k=1

(ηi − ψk)(ηi + ψk). (48)

We made use, on the last line above, of the property ψk ∈ R characteristic of Lamé
function roots to factor out the quantity η2

i − ψ2
k . In other words, since the roots of a Lamé

function are always real by definition (see [21]), the quantity η2
i − ψ2

k can be written as
(ηi − ψk)(ηi + ψk). It is also important to note that the symbol ηi is employed to denote the
independent variable for Em

n , where ηi = ρ, µ or ν. This is to emphasize that the Bm function
has the same general form for each of all three spatial ellipsoidal coordinates. As expected,
the definition of the Lamé polynomials given above is consistent with the separability of
the normal ellipsoidal harmonics into functions depending only on one of ρ,µ or ν (see
equation (13)); this can be made obvious by noting that the entries in each row of L are
the functions of only one variable, whereas only the normal ellipsoidal harmonic function
E

m
n depends on all three spatial coordinates. The entries in the matrix L′ can be computed

straightforwardly by differentiation. They are

L′
i1 = 0 (49)

L′
i2 = 1 (50)

L′
13 = ρ√

ρ2 − h2
3

(51)

L′
14 = ρ√

ρ2 − h2
2

(52)
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L′
15 = ρ

[
2ρ2 − (

h2
2 + h2

3

)]
√(

ρ2 − h2
3

)(
ρ2 − h2

2

) (53)

L′
23 = µ√

µ2 − h2
3

(54)

L′
24 = −µ√

h2
2 − µ2

(55)

L′
25 = µ

[(
h2

2 + h2
3

) − 2µ2
]

√(
µ2 − h2

3

)(
h2

2 − µ2
) (56)

L′
33 = −ν√

h2
3 − ν2

(57)

L′
34 = −ν√

h2
2 − ν2

(58)

L′
35 = ν

[
2ν2 − (

h2
2 + h2

3

)]
√(

h2
3 − ν2

)(
h2

2 − ν2
) . (59)

Note again that each row i in L′ is associated with the Lamé function that depends on the
respective variable ηi .

We now turn to the differentiation of Bm. Applying the chain rule of differentiation, we
obtain

d

dηi

Bm =
m∏

k=1

(ηi − ψk)
d

dηi

m∏
k=1

(ηi + ψk) +
m∏

k=1

(ηi + ψk)
d

dηi

m∏
k=1

(ηi − ψk). (60)

Expanding and factoring out the products on the right-hand side, we obtain the following
expression:

d

dηi

Bm =
m∑

d=1

1

ηi + ψd

m∏
k=1

(ηi − ψk)(ηi + ψk) +
m∑

d=1

1

ηi − ψd

m∏
k=1

(ηi − ψk)(ηi + ψk). (61)

It is useful now to define two functions ζ +
km and ζ−

km:

ζ±
km =

m∑
d=1

1

(ηi ± ψd)
k
. (62)

Straightforwardly, we can also define a third function ζkm as the sum of the two:

ζkm = ζ +
km + ζ−

km

=
m∑

d=1

[
1

(ηi + ψd)
k

+
1

(ηi − ψd)
k

]
. (63)

It is worthwhile noting that ζkm ≡ ζmk , i.e. the permutation of the non-spatial indices k and
m does not change the value of ζkmBm. From this point forward, the subscript m of the ζ ’s
will be suppressed for simplicity and we will write ζk ≡ ζkm. Using the formalism described
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above, one can derive the following result by direct substitution of ζk into the expression for
the derivative of Bm:

d

dηi

Bm = Bmζ1. (64)

This allows us to write the first derivative of the Lamé function using the simple formula

d

dηi

Em
n (ηi) = (Lij ζ1m + L′

ij )B
m. (65)

We now have the tools required to derive ∇E
m
n (ρ, µ, ν). The form assumed by the

gradient of the normal ellipsoidal harmonic function is far more complicated in the ellipsoidal
coordinates than it is in the Cartesian system. Nevertheless, this particular formulation is
very important because of the separability property of the normal ellipsoidal harmonics in
this coordinate system. Moreover, as will be made obvious in a future section, the simplicity
associated with the definition of the ellipsoidal surface in this framework leads to numerous
computational advantages, both analytic and numerical. Upon applying the gradient operator
in ellipsoidal coordinates, we obtain the formula

∇E
n
m = Dij

m∏
k=1

k + Lij∇
m∏

k=1

k (66)

= (Dij + Lij∇)

m∏
k=1

k, (67)

where {Dij } denotes a 3 × 5 matrix with the following entries:

Di1 = 0 (68)

D12 = 1

sρ

ρ̂ (69)

D22 = 1

sµ

µ̂ (70)

D32 = 1

sν

ν̂ (71)

D13 = 1

sρ

ρ√
ρ2 − h2

3

ρ̂ (72)

D23 = 1

sµ

µ√
µ2 − h2

3

µ̂ (73)

D33 = 1

sν

−ν√
h2

3 − ν2
ν̂ (74)

D14 = 1

sρ

ρ√
ρ2 − h2

2

ρ̂ (75)

D24 = 1

sµ

−µ√
h2

2 − µ2
µ̂ (76)
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D34 = 1

sν

−ν√
h2

2 − ν2
ν̂ (77)

D15 =
[
2ρ2 − (

h2
3 + h2

2

)]
ρ√

(ρ2 − µ2)(ρ2 − ν2)
ρ̂ (78)

D25 =
[(

h2
3 + h2

2

) − 2µ2
]
µ√

(µ2 − ρ2)(ν2 − µ2)
µ̂ (79)

D35 =
[
2ν2 − (

h2
3 + h2

2

)]
ν√

(ν2 − ρ2)(ν2 − µ2)
ν̂. (80)

Since we have already computed dBm/dηi using our ζ operator approach, it is now easy to
derive ∇ ∏m

k k because the factorized form of k (see equation (29)) allows us to compute the
partial derivatives with respect to ηi very easily by holding terms of the form

(
η2

j −ψ2
k

)(
η2

l −ψ2
k

)
constant, where j �= i and l �= i. Thus, the same line of reasoning used for finding dBm/dηi

can be employed to compute the partial derivatives of
∏m

k k . The final result is given by

∇
m∏

k=1

k =
[
ζ1m(ρ)

sρ

ρ̂ +
ζ1m(µ)

sµ

µ̂ +
ζ1m(ν)

sν

ν̂

] m∏
k=1

k, (81)

leading to the following expression for ∇E
m
n :

∇E
n
m =

{
Dij + Lij

[
ζ1m(ρ)

sρ

ρ̂ +
ζ1m(µ)

sµ

µ̂ +
ζ1m(ν)

sν

ν̂

]} m∏
k=1

k. (82)

This concludes our derivation of ∇E
m
n in the two coordinate systems of our choice.

4. Derivation of the electric potential φ and field E

The mathematical theory of ellipsoidal harmonics is of great interest in a variety of scientific
areas, including gravitational astrophysics [40], physical geodesy [16] and numerical analysis,
e.g. for obtaining solutions to the ellipsoidal Stokes problem [39]. In biophysics, it is useful
for computing the electric potential, electric field and magnetic field due to one or several
quasistatic current dipoles located in an organ whose shape is approximately ellipsoidal, such
as the human brain or stomach.

Consider a point r′ located inside a body of volume V , where a primary current dipole
source with moment Q is also located. The physics of this problem [19, 41] allows one to
model the phenomenon at hand as a concentration of impressed current Ji to a point r0 using
the Dirac delta functional δ(r − r0) via the algebraic expression

Ji (r) = Qδ(r − r0). (83)

The electric field E induced by the impressed current creates an induction current

Jd(r) = σE(r), (84)

where σ is the tissue conductivity. Since the anatomical and physiological characteristics
of the human body allow for such currents to be considered quasistatic [20, 25, 41, 42], the
electric field is irrotational and Poisson’s equation can be used to find the electric potential φ.

The formulae for φ due to the dipoles located inside ellipsoids, spheroids and spheres
were derived by Kariotou in [24]. For this reason, we discuss these theoretical results only
to the extent that they are necessary for our own derivations. Nevertheless, it is important to
take note of the fact that the expressions provided in [24] do not include ellipsoidal harmonic
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terms of degree 3 or higher because such terms require numerical evaluations of roots for the
Lamé polynomials. In the present study, we provide a generalized numerical and theoretical
method for computing the potential using a harmonic expansion of arbitrary degree and order.

In our ellipsoidal coordinate formulation, the general solution to Poisson’s equation

�φ−(r) = 1

σ
∇ · Ji (r), r ∈ V − (85)

is a superposition of an interior harmonic function �(r) and of the function

φ(r) = 1

4πσ
Q · ∇r0

1

|r − r′| , (86)

where the superscripts (−) and (+) denote quantitites referring to the interior and exterior,
respectively, of the volume for which Poisson’s equation is solved. The equation above is
cited correctly in [14]. In equations (38) and (40) of [24], however (both [14] and [24] have
the same authors), ∇r0 is replaced by ∇; this is most likely a typographic error because all the
other theory in that reference based on this formula is derived correctly using ∇r0 instead of
∇. Upon substitution of the formulae for the interior harmonic function and Laplace operator
[32] into equation (85), the interior potential assumes the form

φ−(r) = b1
0 +

∞∑
n=0

2n+1∑
m=1

{
bm

n +
1

σγ m
n

[
Q · ∇r0E

m
n (r0)

]
Im
n (ρ)

}
E

m
n (r). (87)

The symbol bm
n denotes the coefficient of the normal ellipsoidal harmonic functions E

m
n , which

is given [24] by the formula

bm
n = 1

σγ m
n

[
Q · ∇r0E

m
n (r0)

] [
1

α1α3Em
n (α1)

(
dEm

n

dα1

)−1

− Im
n (α1)

]
, (88)

where differentiation of dEm
n

/
dα1 is with respect to the argument α1. As one can see, the

interior potential is an infinite summation of terms involving the ellipsoidal harmonics E
m
n .

Substitution of the expression for bm
n into the equation defining the potential and further

manipulations yield the important formula

φ−(r) = b1
0 +

∞∑
n=1

2n+1∑
m=1

1

σγ m
n

[
Q · ∇r0E

m
n (r0)

]
E

m
n (r)

×
[
Im
n (ρ) − Im

n (α1) +
1

α2α3Em
n (α1)

(
dEm

n

dα1

)−1
]

. (89)

A similar calculation for φ+ [24] provides the following expression for the exterior potential:

φ+(r) = b1
0

I 1
0 (ρ)

I 1
0 (α1)

+
∞∑

n=1

2n+1∑
m=1

Im
n (ρ)

Im
n (α1)

[
Q · ∇′

E
m
n (r′)

]
E

m
n (r)

σγ m
n α2α3Em

n (α1)

(
dEm

n

dα1

)−1

. (90)

The value assigned to the real constant b1
0 is entirely arbitrary and its presence is evocative

of the fact that one can add any real constant to a scalar potential without affecting the result
obtained when computing the potential difference between two points. In the next section, it
will be shown that setting this constant to 0 is computationally advantageous in the calculation
of the magnetic field. Although the exterior potential involves the exterior harmonic functions
F

m
n , the potential can also be expressed only in terms of internal harmonics E

m
n since the former

can be defined in terms of the latter. The expressions above were simplified analytically in
[24] for ellipsoidal terms of first and second degree. In this section, however, we develop a
more general model for obtaining solutions for an arbitrarily large expansion of harmonics.
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Using the expressions for φ, we can derive the corresponding formulae for the electric
field E that apply both to the interior (E−) and to the exterior (E+) of the ellipsoid:

E−(r) = −∇φ− (91)

= −
∞∑

n=1

2n+1∑
m=1

1

σγ m
n

[
Q · ∇r0E

m
n (r0)

]∇E
m
n (r)

×
[
Im
n (ρ) − Im

n (α1) +
1

α2α3Em
n (α1)

(
dEm

n

dα1

)−1
]

. (92)

Similarly, we obtain for E+

E+(r) = −∇φ+ (93)

= −
∞∑

n=1

2n+1∑
m=1

Im
n (ρ)

Im
n (α1)

[
Q · ∇r0E

m
n (r0)

]∇E
m
n (r)

σγ m
n α2α3Em

n (α1)

(
dEm

n

dα1

)−1

. (94)

This completes our derivation of the electric potential and field.

5. Discussion and computational considerations

We can now summarize our algorithm proposed for the computation of φ, B and E using
an ellipsoidal harmonic expansion of arbitrary order and degree. The generalized formulae
for these three quantities are given in equations (89), (90), (92) and (94). The constants
γ m

n can be evaluated numerically using equation (22) as well as the formula for the surface
differential dS specified by equation (23). The normal ellipsoidal harmonic functions are given
in both Cartesian (equations (24)–(26)) and ellipsoidal (equations (27)–(29)) coordinates. The
gradient ∇′

E
m
n can be computed using equation (82) with inputs for {Dij }, {Lij } provided in

equations (68)–(80) and (28), respectively. Two other required formulas include the elliptic
integrals Im

n (which can be evaluated numerically using equation (15)) and the first derivative
of the Lamé function (provided by equation (65)). Finally, the function Dn is specified by
equation (41).

A number of computational issues should be addressed with reference to the problem at
hand. As explained in [24], ellipsoidal harmonics can be expressed analytically in terms of the
αi only for n � 3 because higher-degree harmonic parameters lead to irreducible polynomial
equations of cubic or higher degree. In this work, we choose to work only with the general
formula for the ellipsoidal harmonics of arbitrary order and degree. According to a result by
Stieltjes [37, 38], the Lamé function Em

n (ρ) has at most m real zeros ψ1, . . . , ψm,m � 2n + 1,
none of which are repeated. Because identifying all roots is algebraically impossible for
polynomials of order 5 and higher, better approximations to the electric potential can be
obtained only by implementing a numerical algorithm. To find the characteristic equations
associated with Lamé polynomials, one must substitute the general expressions for E

m
n into

the Laplace equation and write down the relations that must hold in order for this equation
to be satisfied; the details of this process are demonstrated in detail by Hobson, whose work
on ellipsoidal harmonics [21] is an excellent reference. After tedious manipulations, it can be
shown that the set of characteristic equations is given by

3∑
d=1

zd

α2
d + θp

+
m∑

q=1,q �=p

1

θp − θq

= 0, (95)
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Table 1. Values of the coefficients zd , d = 1, . . . , 3 in the characteristic equations of the Lamé
polynomials.

Value
Function
type z1 z2 z3

K 1/4 1/4 1/4
L 3/4 1/4 1/4
M 1/4 3/4 3/4
N 3/4 3/4 3/4

where θ1, . . . , θm are the m roots sought and the constants zd have the values shown in
table 1. The left-hand side in this set of equations is the logarithmic differential coefficient
with respect to θp of the product

Em
n =

m∏
p=1

(
α2

1 + θp

)z1
(
α2

2 + θp

)z2
(
α2

3 + θp

)z3

m∏
q+p

|θp − θq |, (96)

which is known as Stieltjes’ formulation of the Lamé function. The system of equations
defined above can be manipulated using an efficient method for solving nonlinear equations;
for example, a subspace trust region method based on the interior-reflective Newton method
[11, 12] was found by the author to exhibit excellent convergence behaviour. In this approach,
each iteration involves the approximate solution of a large linear system using the method of
preconditioned conjugate gradients [12].

Numerical integration must be used to compute elliptic integrals of the form shown in
equation (15), as well as the constants γ m

n . In the case of the Im
n , a simple analysis of the

physical problem demonstrates that contributions to the integral are minute for the values of
the integration variable t greater than some constant multiple of α1, i.e. for t > cα1, where c is
of O(1) and c > 1. Hence, the upper integration limit can appropriately be fixed in this case
to a suitable value.

The results presented in this paper show that the calculation of higher-order contributors
to the electric potential and field in ellipsoidal geometry is a tedious and computationally-
demanding task. This raises the question as to whether simpler techniques—such as the finite
or boundary element methods—may be superior. This may indeed be the case for the forward
problem of MEG or MGG; nevertheless, a certain important advantage associated with our
method is not available in the BEM or FEM formalisms. This advantage refers to the fact that
neither of the latter methods can clarify the issue as to how many higher-order contributors
are necessary for accurate calculations of φ and E in the ellipsoidal formalism. Because of
this, the issue of accuracy associated with the localization of sources from inverse procedures
applied to MGG or foetal EEG data (see [18] and the discussion in [23]) cannot be settled only
from an application of FEM or BEM. More research is therefore required to determine how
appropriate the ellipsoidal model is in comparison with the realistic models.

6. Conclusion and future research

In this paper, we have presented a generalized theoretical and numerical method for computing
the electric potential, electric field and magnetic field due to a quasistatic bioelectric current
dipole located inside an ellipsoid. The electric potential field can be expressed as a truncated
infinite series of terms involving the normal ellipsoidal harmonic functions E

m
n and their

gradients. On the other hand, the magnetic field is given by a double infinite summation of
ellipsoidal terms, which potentially makes its computation more intensive by two orders of
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magnitude. Our computational technique requires one to find the roots of Lamé functions, a
task that has already been successfully approached using a standard nonlinear optimization
algorithm. In our future endeavour, we intend to implement the algorithm described here
numerically and to investigate the quantitative importance of high-order terms in the calculation
of φ, E and B for the electro-and magneto-gastrographic forward problem.
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